High Precision Analysis of NPs with a Deep Processing Grammar
STEP 2008

António Branco1 Francisco Costa1

1Universidade de Lisboa

September 23, 2008
Outline

1 Introduction
2 Foundations
3 Design Features
4 Coverage
5 Noun Phrases
6 Evaluation
7 Applications and Further Work
8 Final Remarks
Introduction

- LXGram
 - Hand-crafted precision grammar for Portuguese
 - Deep linguistic processing
- Head-Driven Phrase Structure Grammar (HPSG) [Pollard and Sag, 1994]
- Minimal Recursion Semantics (MRS) [Copestake et al., 2005]
- Linguistic Knowledge Builder (LKB) [Copestake, 2002]
- PET parser [Callmeier, 2000]
- DELPH-IN consortium
- HPSGs for other languages, based on the same formalisms and tools:
 - English [Copestake and Flickinger, 2000]
 - German [Müller and Kasper, 2000]
 - Japanese [Siegel and Bender, 2002], ...
Head-Driven Phrase Structure Grammar

- Declarative formalism
- Feature structures
- Type system
- Unification

```
\[
\begin{array}{c}
type1 \\
\text{FEATURE1} \\
type2 \\
\text{FEATURE2} \\
\end{array} \\
\begin{array}{c}
type3 \\
\text{FEATURE3} \quad \text{unification tag} \\
\text{FEATURE4} \quad \text{unification tag} \\
\end{array}
\]
```
Minimal Recursion Semantics

- Underspecification of scope
- Conjunction represented indirectly
- Abstraction from many grammar details
- Interface to applications

\[
\begin{align*}
mrs & \quad LTOP \quad h_1 \ h \\
INDEX & \quad e_2 \\
RELS & \quad \langle \langle todo_q_rel \rangle, \langle equipa_n_rel \rangle, \langle poder_v_rel \rangle, \langle vencer_v_rel \rangle \rangle \\
HCONS & \quad \langle \langle qeq \rangle, \langle qeq \rangle, \langle qeq \rangle \rangle
\end{align*}
\]

\[
\text{all}(x, \text{team}(x), \text{possible}(\text{win}(x)))
\]

\[
\text{possible}(\text{all}(x, \text{team}(x), \text{win}(x)))
\]
Design Features

- Bidirectionality
 - Parsing and generation

- Precision
 - Ungrammatical sentences are unparsable

- Broad coverage
 - Some support for linguistic variation (Portugal, Brazil)

- Efficiency
 - PET is an efficient engine
 - Grammar engineering techniques

- Robustness
 - Unknown word mechanisms
 - Robustness rules (e.g. sentences with no verb)

- Availability
 http://nlxgroup.di.fc.ul.pt/lxgram
Coverage

- Previous work on guessing information about unknown words from the output of shallow tools

- Size of the grammar:
 - 24484 lines of code (including comments)
 - 53 syntax rules
 - 40 lexical rules
 - 3154 total types
 - 414 types for lexical items
 - 2718 hand-built lexical entries
Coverage

- Implemented phenomena:
 - Declarative sentences, imperatives and yes/no questions
 - Some subcategorization frames of verbs, nouns and adjectives
 - Comparative constructions
 - Noun phrase structure
 - Verbal modification
 - Relative clauses
 - Null subjects and objects
 - Floated quantifiers
1. Introduction
2. Foundations
3. Design Features
4. Coverage
5. Noun Phrases
6. Evaluation
7. Applications and Further Work
8. Final Remarks
Noun Phrases — Examples

Determiners and predeterminers

<table>
<thead>
<tr>
<th>Pt</th>
<th>gloss</th>
<th>En</th>
</tr>
</thead>
<tbody>
<tr>
<td>os problemas</td>
<td>os problems</td>
<td>the problems</td>
</tr>
<tr>
<td>todos *(os) problemas</td>
<td>all the problems</td>
<td>all (the) problems</td>
</tr>
<tr>
<td>estes (*os) problemas</td>
<td>these the problems</td>
<td>these problems</td>
</tr>
<tr>
<td>todos estes problemas</td>
<td>all these problems</td>
<td>all these problems</td>
</tr>
<tr>
<td>os problemas estes</td>
<td>the problems these</td>
<td>these problems</td>
</tr>
</tbody>
</table>
Noun Phrases — Examples

- Determiners and predeterminers

“estes problemas”, “os problemas estes” ("these problems")
Noun Phrases — Examples

- Determiners and predeterminers
- Possessives

Pt a sua guitarra
gloss the his guitar
En his guitar

\[
\begin{array}{c}
\text{mrs} \\
\text{LTOP} \ h h_1 \\
\text{INDEX} \ x x_2 \\
\text{RELS} \\
\text{LBL} \ h_1 \\
\text{ARG0} \ x_2 \\
\text{RSTR} \ h_4 \\
\text{BODY} \ h_3 \\
\text{arg} \\
\text{HARG} \ h_4 \\
\text{LARG} \ h_5 \\
\text{LBL} \ h_8 \\
\text{ARG0} \ h_6 \\
\text{RSTR} \ h_9 \\
\text{BODY} \ h_{10} \\
\text{arg} \\
\text{HARG} \ h_9 \\
\text{LARG} \ h_{11} \\
\text{LBL} \ h_{11} \\
\text{ARG0} \ h_7 \\
\text{RSTR} \ h_5 \\
\text{BODY} \ h_7 \\
\end{array}
\]
Noun Phrases — Examples

- Determiners and predeterminers
- Possessives

Pt
a sua filha

Gloss
the his daughter

En
his daughter

\[
\begin{align*}
\text{Pt} & \quad \text{a sua filha} \\
\text{Gloss} & \quad \text{the his daughter} \\
\text{En} & \quad \text{his daughter}
\end{align*}
\]
Noun Phrases — Examples

- Missing nouns

Pt um com água
 gloss one with water
En one with water
Noun Phrases — Examples

- Missing nouns
- Intersective and non-intersective adjectives

Pt	um carro francês
gloss | a car French
En | a French car

\[\lambda P. \text{um}(x, \text{carro}(x) \land \text{frances}(x), P(x)) \]
Noun Phrases — Examples

- Missing nouns
- Intersective and non-intersective adjectives

Pt | um | antigo | presidente

gloss | a former president

En | a former president

\(\lambda P. \text{um}(x, \text{antigo}(\text{presidente}(x)), P(x)) \)
Noun Phrases — Examples

- Floated quantifiers

Pt Todos os preços vão subir.
gloss all the prices will go up

En All prices will go up.

Pt Os preços todos vão subir.
gloss the prices all will go up

Pt Os preços vão todos subir.
gloss the prices will all go up

Pt Os preços vão subir todos.
gloss the prices will go up all

\[all(x, \text{price}(x), \text{will}(\text{go_up}(x))) \]
Noun Phrases — Examples

- Floated quantifiers

```
[SUBJ ⟨⟩]

[SUBJ ⟨1⟩]

Os
the

preços
prices

vão
will

[SUBJ ⟨1⟩ NP⟨e,t⟩]

todos
all

[subir
go up]
```
Noun Phrases — Examples

- Floated quantifiers
- Scope of adjectives and relative clauses

\[
\lambda P. a(x, possible(doctor(x) \land chinese(x)), P(x))
\]

- um possível médico chinês
- possible doctor Chinese
- a possible Chinese doctor

\[
\lambda P. a(x, possible(doctor(x)) \land chinese(x), P(x))
\]

- um possível médico que é chinês
- possible doctor who is Chinese
- a possible doctor who is Chinese
Noun Phrases — Examples

- Floated quantifiers
- Scope of adjectives and relative clauses
1 Introduction
2 Foundations
3 Design Features
4 Coverage
5 Noun Phrases
6 Evaluation
7 Applications and Further Work
8 Final Remarks
Evaluation

- Preliminary evaluation
 - Newspaper text, 145 sentences (avg 22 words)
 - Unknown words approximated via a PoS tagger and a morphological analyzer
 - 13.1% of sentences parsed

- Older experiment [Branco and Costa, 2007]
 - 180K short sentences (5–9 words) from newspaper text
 - Similar approach to unknown words
 - 26% coverage

- Test suites
 - 422 positive examples, 429 negative examples (851 total)

- Comparison
 - ERG parses 57% of the sentences in the BNC for which it has full lexical span (32% of total; 10–20 words/sentence)
 [Baldwin et al., 2005]
1 Introduction
2 Foundations
3 Design Features
4 Coverage
5 Noun Phrases
6 Evaluation
7 Applications and Further Work
8 Final Remarks
Applications and Further Work

■ Previous work:
 ■ Automatically discriminate between texts written in European Portuguese and Brazilian Portuguese

■ Current work:
 ■ Integration of an external lexicon (14K nouns, 3K verbs and 3K adjectives so far)
 ■ Treebanking
 ■ Stochastic disambiguation
 ■ Grammar extension
 ■ Integration in a question answering system
Final Remarks

- LXGram: hand-crafted precision grammar for Portuguese
- Parsing and generation
- HPSG, MRS
- Heavy focus on NP phenomena until now
- More clausal level phenomena being implemented now
References

